

Designing a Science Fair Project

- Choose an area of interest
- Identify a problem or pose a question to be answered.
- Make observations and collect initial data.
- Form a "<u>testable</u>" hypothesis based on initial observations.
- Design an experimental investigation to test your hypothesis.

The Scientific method

Step 1: Make observations

- A common misconception is that the scientific method starts with the formation of a hypothesis.
- In reality a hypothesis should be formed after the collection of the fundamental information or data relating to the system being observed.
- A hypothesis is a tentative statement that proposes a possible explanation to some phenomenon or event based on the information that currently known.

The Scientific method

Step 2: Formulate a Hypothesis

- A hypothesis is a tentative statement that proposes a possible explanation to some phenomenon or event based on the information that currently known.
- A useful hypothesis is testable statement that can be used to predict the outcome of future observations.

The Scientific method

Step 3: Design an experiment

- Determine an experimental method or means of testing the hypothesis that has been proposed.
- When designing the experiment it is important to maintain a control group for comparison with the observed experimental results.
- The control group must only differ from the experimental group by the variable being tested otherwise the experimental data collected is likely invalidated.
- The control group must only differ from the experimental group by the variable being tested otherwise the experimental data collected is likely invalidated.

Safety Material Safety Data Sheets provide information on: Product name and chemical composition Hazards First Aid Measures in case of exposure Fire fighting measures Accidental release measures Safe handling and storage information Appropriate personal protection measures; (gloves, goggles, protective clothing etc.) Physical and chemical properties Chemical reactivity **Toxilogical information** Ecological information Disposal considerations Other pertinent information specific to the particular chemical

The Scientific method

Step 4: Test the Hypothesis

- Perform the experiment that has been designed.
- Collect all data including observations made during the course of the experiment.
- Collect all data related to your experiment including variables beyond your control.

The Scientific method

Step 5: Evaluate the Hypothesis

- Analyze the data that was collected from the experiment. (Including statistical analysis)
- Evaluate the statistical analysis of the experimental data to determine whether the results support or disproves your hypothesis.
- The collection of data that supports the hypothesis does not guarantee that the hypothesis is correct.
- If the experimental evidence does not support the hypothesis it may be necessary to propose a new hypothesis based on the new experimental data.

The Scientific method

Step 6: Evaluation of Experimental Method

If the experimental data does not support the hypothesis or provides inconclusive evidence it may be necessary to redesign your experimental approach.